Antimicrobial Activity and Resistance of Microorganisms Isolated from Honey Bees
Keywords:
bees, antibiotic resistance, essential oils, microfloraAbstract
Knowledge of composition of bee gut microbiota is important to ensure balanced gut microbiota and improve the health status of bees. The aim of the present study was to detect the microorganisms in gut of honey bee and to study their antimicrobial resistance and antimicrobial activity against three essential oils. Content of bees gut was studied with microbiological methods, and isolates were confirmed with MALDI TOF mass spectrometry. Isolated species were tested for antibiotic resistance to ciprofloxacin, levofloxacin, amikacin and gentamicin. For antimicrobial activity, essential oils of Abies alba, Pinus mugo and Pinus sylvestris were used. Gram-positive bacteria Bacillus oleronius, Micrococcus luteus, Staphylococcus epidermidis and three Gram-negative bacteria Pseudomonas oryzihabitans, Serratia fonticola, Serratia marcescens were isolated from bees gut. Antibiotic resistance was found in Gram-negative bacteria, while the Gram-positive bacteria were sensitive to all antibiotic tested. The best antibacterial activity of essential oils found against Gram-positive bacterial strains. Essential oils can be a potential sources of compounds with antimicrobial activity on Gram-positive isolates of bees gut.
References
Moran, N.A., Telang, A., Bacteriocyte-associated symbionts of insects – A variety of insect groups harbor ancient prokaryotic endosymbionts, Bioscience, 1998, 48, 295-304
Mueller, U.G., Schultz, T.R., Currie, C.R., Adams, R.M.M., Malloch, D., The origin of the attine ant-fungus mutualism, Quarterly Review of Biology, 2001, 76, 169-197
Gokarn, R.R., Eiteman, M.A., Martin, S.A., Eriksson, K.E.L., Production of succinate from glucose, cellobiose, and various cellulosic materials by the ruminal anaerobic bacteria Fibrobacter succinogenes and Ruminococcus flavefaciens, Applied Biochemistry and Biotechnology, 1997, 68, 69-80
Lednicka, D., Mergaert, J., Cnockaert, M.C., Swings, J., Isolation and identification of cellulolytic bacteria involved in the degradation of natural cellulosic fibres, Systematic and Applied Microbiology, 2000, 23, 292-299
Han, Y.J., Chen, H.Z., Plant cell wall proteins & enzymatic hydrolysis of lignocellulose, Progress in Chemistry, 2007, 19, 1153-1158
Suen, G., Scott, J.J., Aylward, F.O., Adams, S.M., Tringe, S.G., An Insect Herbivore Microbiome with High Plant Biomass-Degrading Capacity, Plos Genetics 2010, 6
Gheldof, N., Wang, X.H., Engeseth, N.J., Identification and quantification of antioxidant components of honeys from various floral sources, Journal of Agricultural and Food Chemistry 2002, 50, 5870-5877
Roulston, T.H., Cane, J.H., The effect of pollen protein concentration on body size in the sweat bee Lasioglossum zephyrum (Hymenoptera : Apiformes), Evolutionary Ecology 2002, 16, 49-65
Haydak, M., Honey bee nutrition, Annual Reviews of Entomology 1970, 15, 143-156
Herbert, E., ed. Honey bee nutrition. 5th ed. Hamilton, IL: Dadant and Sons. pp 197–233
Kačániová, M., Chlebo, R., Kopernicky, M., Trakovicka, C., Microflora of the honeybee gastrointestinal tract, Folia Microbiologica, 2004, 49(2), 169-171
Gilliam, M., Buchmann, S.L., Lorenz, B.J., Schmalzel, R.J., Bacteria belonging to the genus Bacillus associated with 3 species of solitary bees, Apidologie, 1990, 21, 99-105.
Rada, V., Máchová, M., Huk, J., Marounek, M., Duková, D., Microflora in the honey bee digestive tract counts, characteristics, Apidologie, 1997, 28, 357-365
Kačániová, M., Melich, M., Knazovická, V,. Hačšík, P., Sudzinová, J. Pauličová, S. Čuboň J., The indicator microorganisms value in relation to primary contamination of honey. Lucrari Stiintificor, Zootechnie si Biotechnologii, 2009, 42(2), 159-166
Duberney Garcia, G., Marco, A., Rojas, M., Jimenas, N., Contenido microbiologico cultivable deltracto intestinal y pollen almacenadoc de Apis mellifera (Hymenoptera: Apidae), Actabiologica Colombiana, 2006, 11(1), 123-129
Ebrahimi, A., Lotfalian, S., Isolation and antibiotic resistance patterns of Escherichia coli and coagulase positive Staphylococcus aureus from bees digestive tract, Iranian Journal of veterinary Research, 2005, 6(2), 1-3
Lyapunov, Y.A., Kuzyaev, R.Z., Khismatullin, R.G., Bezgodova, O.A., Intestinal Enterobacteria
of the Hibernating Apis mellifera mellifera L, Bees
Microbiology, 2008, 77(3): 373-379.
Lacey, N., Delaney, S., Kavanagh, K., Powell, F.C., Mite-related bacterial antigens stimulate inflammatory cells in rosacea, British Journal of Dermatology, 2007, 157, 474-481
Vaerewijck, M.J.M., De Vos, P., Lebbe, L., Scheldeman, P., Hoste, B., Heyndrickx, M., Occurrence of Bacillus sporothermodurans and other aerobic spore-forming species in feed concentrate for dairy cattle, Journal of Applied Microbiology, 2001, 91, 1074-1084
Scheldeman, P., Herman, L., Goris, J., De Vos, P., Heyndrickx, M., Polymerase chain reaction identification of Bacillus sporothermodurans from dairy sources, Journal of Applied Microbiology, 2002, 92, 983-991
Scheldeman, P., Pil, A., Herman, L., De Vos, P., Heyndrickx, M., Incidence and diversity of potentially highly heat-resistant spores isolated at dairy farms, Applied Environmental Microbiology, 2005, 71, 1480-1494
Scheldeman, P., Herman, L., Foster, S., Heyndrickx, M. Bacillus sporothermodurans and other highly heat-resistant spore formers in milk, Journal of Applied Microbiology, 2006, 101, 542-555
Madigan, M.; Martinko, J. Brock Biology of Microorganisms (11th ed.), Prentice Hall. 2005
von Eiff, C., Peters, G., Heilmann, C., Pathogenesis of infections due to coagulase-negative staphylococci, Lancet Infection Disaese, 2002, 2(11), 677-685
Panagopoulos, G.N., Megaloikonomos, P.D., Liontos, M., Pseudomonas oryzihabitans Infected Total Hip Arthroplasty, Journal of Bone and Joint Infection, 2016, 1, 54-58
Donnenberg, M.S., Enterobacteriaceae. In: Mandell GL, Bennett JE, Dolin R, eds. Principles and Practice of Infectious Diseases. Vol 2. 7th. Philadelphia, Pa: Churchill Livingstone –Elsevier, 2010, 2815-2833
Mitić, Z.S., Jovanović, B., Jovanović, S.Č., Mihajilov-Krstev, T., Stojanović-Radić, Z.Z., Cvetković, V.J., Mitrović, T.L., Marin, P.D., Zlatković, B.K., Stojanović, G.S. Comparative study of the essential oils of four Pinus species: Chemical composition, antimicrobial and insect larvicidal activity, Industrial Crops and Products, 2018, 111, 55-62
European Committee on Antimicrobial Susceptibility Testing (EUCAST). Antimicrobial susceptibility testing: Eucast disk diffusion method, version 3.0 from April 2013
European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint tables for interpretation of MICs and zone diameters, version 5.0 valid from 2015-01-01
Kačániová, M., Terentjeva, M., Vukovic, N., Puchalski, C., Roychoudhury, S., Kunová, S., Kluga A., Tokár, M., Kluz, M., Ivanišová, E., The antioxidant and antimicrobial activity of essential oils against Pseudomonas spp. isolated from fish, Saudi Pharmaceutical Journal, 2017, 25(8), 1108-1116
Kačániová, M., Gasper, J,, Brindza, J,, Schubertová, Z., Ivanišová, E., Bacteria of apis mellifera gastrointestinal tract: counts, identification and their antibiotic resistance, Agrobiodiverzity, 2017,
http://dx.doi.org/10.15414/agrobiodiversity.2017.2585-8246.210-215
Bagci, E., Digrak, M., Antimicrobial activity of essential oils of some Abies (Fir) species from Turkey, Flavour and Fragrance Journal, 1996, 11, 251-256
Bagci, E., Digrak, M., Antimicrobial activities of Abies nordmanniana spp. nordmanniana ve A. nordmanniana equi-trojani, Proceedings of XII. National Biology Congresss, 6-8 July 1994, Edirne, Turkey, 1994, 227–231
Kizil, M., Kizil, G., Yavuz, M., Aytekin, C., Antimicrobial activity of rosins obtained from the roots and stems of Cedrus libani and Abies cilicia, Applied Biochemical Microbiology, 2002, 38, 144-146
Oluwadayo Sonibare, O., Olakunle, K., Chemical composition and antibacterial activity of the essential oil of Pinus caribaea from Nigeria. African Journal of Biotechnology, 2008, 7(14), 2462-2464
Youg-Suk, K., Dong-Hwa, Sh., Volatile components and antibacterial effects of pine needle (Pinus densiflora S. and Z.) extracts, Food Microbiology, 2005, 22, 37-45
Sacchetti, G., Maietti, S., Muzzoli, M., Scaglianti, M., Manfredini, S., Radice, M., Bruni, R., Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods, Food Chemistry, 2005, 9(1), 621-632
Kamin, W., Kieser, M., Pinimethol ointment in patients suffering from upper respiratory tract infections – A post-marketing observational study, Phytomedicine, 2007, 14, 787-791
Ramdani, M., Lograda, T., Chalard, P., Figueredo, G., Chemical and antimicrobial properties of essential oils of abies numidica, endemic species of Algeria, International Journal of Phytopharmacology, 2014, 5(6), 432-440
Karapandzova, M., Stefkov, G., Trajkovska-Dokic, E., Kaftandzieva, A., Kulevanova, S., Antimicrobial activity of needle essential oil of Pinus peuce Griseb. (Pinaceae) from Macedonian flora, Macedonian pharmaceutical bulletin, 2011, 57(1, 2), 25-36
Jerković-Mujkić, A., Delić, O., Bešta, R., Radosavljević, G., Antibacterial activity of Pinus sylvestris L. and Cupressus sempervirens L. essential oils, 20th Scientific-Expert Conference on Agriculture and Food Industry - Neum 2009, 209-216.