Antimicrobial Activity of Citrus reticulata Blanko Essential Oil against Plant Pathogen

Authors

  • Natália Čmiková Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
  • Andrea Verešová Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
  • Miroslava Kačániová Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia

Keywords:

Citrus reticulata Blanko, antimicrobial activity, plant pathogens

Abstract

The tangerine, or Citrus reticulata Blanco, is a citrus fruit that dates back several centuries and is valued for its many nutrients and bioactive compounds that can have medicinal effects. The tangerine is valued for its many biological properties, which include anti-inflammatory, anti-cancer, anti-hyperlipidemic, anti-diabetic and antioxidant properties in addition to its great taste. The many phytochemicals found in tangerines, such as organic acids, sugars and amino acids, as well as secondary metabolites including flavonoids, phenolic acids, carotenoids and polyphenols, are responsible for these health benefits. The aim of this study is to assess the antibacterial efficacy of C. reticulata Blanco against specific plant pathogenic bacteria such as Xanthomonas arboricola CCM 1441, Pectobacterium carotovorum CCM 1008, Pseudomonas putida CCM 7156, Bacillus subtilis CCM 2217, Priestia (Bacillus) megaterium CCM 2007. In our investigation, two approaches were used to measure antimicrobial activity. The antimicrobial activity of the investigated bacterial strains was compared using the disc diffusion method under in vitro conditions and their antibiotic resistance was also evaluated. The antimicrobial activity under in situ conditions was a species approach applied to the surface of carrots. The essential oil of C. reticulata Blanco was found to have the strongest in vitro antibacterial activity against P. megaterium. In addition, in situ monitoring of the antimicrobial activity was carried out, with the highest results obtained against P. megaterium at a concentration of 125 µg/L. According to the present investigation, C. reticulata Blanco essential oil significantly inhibited the growth of various Gram-positive and Gram-negative bacteria.

References

Wang, F., Chen, L., Chen, H., Chen, S., & Liu, Y. (2019). Analysis of Flavonoid Metabolites in Citrus Peels (Citrus reticulata “Dahongpao”) Using UPLC-ESI-MS/MS. Molecules, 24(15), 2680. https://doi.org/10.3390/molecules24152680

Putnik, P., Barba, F. J., Lorenzo, J. M., Gabrić, D., Shpigelman, A., Cravotto, G., & Bursać Kovačević, D. (2017). An Integrated Approach to Mandarin Processing: Food Safety and Nutritional Quality, Consumer Preference, and Nutrient Bioaccessibility. Comprehensive Reviews in Food Science and Food Safety, 16(6), 1345–1358. https://doi.org/10.1111/1541-4337.12310

Wang, L., He, F., Huang, Y., He, J., Yang, S., Zeng, J., Deng, C., Jiang, X., Fang, Y., Wen, S., Xu, R., Yu, H., Yang, X., Zhong, G., Chen, C., Yan, X., Zhou, C., Zhang, H., Xie, Z., Xu, Q. (2018). Genome of Wild Mandarin and Domestication History of Mandarin. Molecular Plant, 11(8), 1024–1037.

https://doi.org/10.1016/j.molp.2018.06.001

Goldenberg, L., Yaniv, Y., Porat, R., & Carmi, N. (2018). Mandarin fruit quality: A review. Journal of the Science of Food and Agriculture, 98(1), 18–26.

https://doi.org/10.1002/jsfa.8495

Song, X., Liu, T., Wang, L., Liu, L., Li, X., & Wu, X. (2020). Antibacterial Effects and Mechanism of Mandarin (Citrus reticulata L.) Essential Oil against Staphylococcus aureus. Molecules, 25(21), 4956.

https://doi.org/10.3390/molecules25214956

Qiao, J., Zhu, M., Lu, Z., Lv, F., Zhao, H., & Bie, X. (2020). The antibiotics resistance mechanism and pathogenicity of cold stressed Staphylococcus aureus. LWT, 126, 109274.

https://doi.org/10.1016/j.lwt.2020.109274

Viuda-Martos, M., Ruiz-Navajas, Y., Fernández-López, J., & Pérez-Álvarez, J. (2008). Antifungal activity of lemon (Citrus lemon L.), mandarin (Citrus reticulata L.), grapefruit (Citrus paradisi L.) and orange (Citrus sinensis L.) essential oils. Food Control, 19(12), 1130–1138.

https://doi.org/10.1016/j.foodcont.2007.12.003

Espina, L., Somolinos, M., Lorán, S., Conchello, P., García, D., & Pagán, R. (2011). Chemical composition of commercial citrus fruit essential oils and evaluation of their antimicrobial activity acting alone or in combined processes. Food Control, 22(6), 896–902. https://doi.org/10.1016/j.foodcont.2010.11.021

Simas, D. L. R., De Amorim, S. H. B. M., Goulart, F. R. V., Alviano, C. S., Alviano, D. S., & Da Silva, A. J. R. (2017). Citrus species essential oils and their components can inhibit or stimulate fungal growth in fruit. Industrial Crops and Products, 98, 108–115. https://doi.org/10.1016/j.indcrop.2017.01.026

Farag, M. A., Abib, B., Ayad, L., & Khattab, A. R. (2020). Sweet and bitter oranges: An updated comparative review of their bioactives, nutrition, food quality, therapeutic merits and biowaste valorization practices. Food Chemistry, 331, 127306.

https://doi.org/10.1016/j.foodchem.2020.127306

Kačániová, M., Galovičová, L., Valková, V., Ďuranová, H., Borotová, P., Štefániková, J., Vukovic, N. L., Vukic, M., Kunová, S., Felsöciová, S., Miklášová, K., Savitskaya, T., & Grinshpan, D. (2021). Chemical composition and biological activity of Salvia officinalis essential oil. Acta Horticulturae et Regiotecturae, 24(2), 81–88.

https://doi.org/10.2478/ahr-2021-0028

Monteiro, S. S., De Oliveira, V. M., & Pasquali, M. A. D. B. (2022). Probiotics in Citrus Fruits Products: Health Benefits and Future Trends for the Production of Functional Foods—A Bibliometric Review. Foods, 11(9), 1299. https://doi.org/10.3390/foods11091299

Shen, C.-Y., Jiang, J.-G., Li, M.-Q., Zheng, C.-Y., & Zhu, W. (2017). Structural characterization and immunomodulatory activity of novel polysaccharides from Citrus aurantium Linn. Variant amara Engl. Journal of Functional Foods, 35, 352–362.

https://doi.org/10.1016/j.jff.2017.05.055

Gomes-Araújo, R., Martínez-Vázquez, D. G., Charles-Rodríguez, A. V., Rangel-Ortega, S., & Robledo-Olivo, A. (2021). Bioactive Compounds from Agricultural Residues, Their Obtaining Techniques, and the Antimicrobial Effect as Postharvest Additives. International Journal of Food Science, 2021, 1–13.

https://doi.org/10.1155/2021/9936722

Sharma, K., & Garg, V. K. (2019). Vermicomposting of Waste. V Sustainable Resource Recovery and Zero Waste Approaches (s. 133–164). Elsevier. https://doi.org/10.1016/B978-0-444-64200-4.00010-4

Duque-Acevedo, M., Belmonte-Ureña, L. J., Cortés-García, F. J., & Camacho-Ferre, F. (2020). Agricultural waste: Review of the evolution, approaches and perspectives on alternative uses. Global Ecology and Conservation, 22, e00902.

https://doi.org/10.1016/j.gecco.2020.e00902

Sarangi, P. K., Subudhi, S., Bhatia, L., Saha, K., Mudgil, D., Shadangi, K. P., Srivas, R. K., Pattnaik, B., & Arya, R. K. (2022). Utilization of Agricultural Waste Biomass And Recycling Towards Circular Bioeconomy. https://doi.org/10.21203/rs.3.rs-1178197/v1

Ernawita, Wahyuono, R., Hesse, J., Hipler, U.-C., Elsner, P., & Böhm, V. (2017). In Vitro Lipophilic Antioxidant Capacity, Antidiabetic and Antibacterial Activity of Citrus Fruits Extracts from Aceh, Indonesia. Antioxidants, 6(1), 11.

https://doi.org/10.3390/antiox6010011

Frassinetti, S., Caltavuturo, L., Cini, M., Della Croce, C. M., & Maserti, B. E. (2011). Antibacterial and Antioxidant Activity of Essential Oils from Citrus spp. Journal of Essential Oil Research, 23(1), 27–31. https://doi.org/10.1080/10412905.2011.9700427

Lin, X., Cao, S., Sun, J., Lu, D., Zhong, B., & Chun, J. (2021). The Chemical Compositions, and Antibacterial and Antioxidant Activities of Four Types of Citrus Essential Oils. Molecules, 26(11), 3412. https://doi.org/10.3390/molecules26113412

Khadayat, K., Sherpa, D. D., Malla, K. P., Shrestha, S., Rana, N., Marasini, B. P., Khanal, S., Rayamajhee, B., Bhattarai, B. R., & Parajuli, N. (2020). Molecular Identification and Antimicrobial Potential of Streptomyces Species from Nepalese Soil. International Journal of Microbiology, 2020, 1–8.

https://doi.org/10.1155/2020/8817467

Puvača, N., & De Llanos Frutos, R. (2021). Antimicrobial Resistance in Escherichia coli Strains Isolated from Humans and Pet Animals. Antibiotics, 10(1), 69. https://doi.org/10.3390/antibiotics10010069

Friedly, E. C., Crandall, P. G., Ricke, S. C., Roman, M., O’Bryan, C., & Chalova, V. I. (2009). In vitro Antilisterial Effects of Citrus Oil Fractions in Combination with Organic Acids. Journal of Food Science, 74(2), M67–M72.

https://doi.org/10.1111/j.1750-3841.2009.01056.x

O’Bryan, C. A., Crandall, P. G., Chalova, V. I., & Ricke, S. C. (2008). Orange Essential Oils Antimicrobial Activities against Salmonella spp. Journal of Food Science, 73(6), M264–M267.

https://doi.org/10.1111/j.1750-3841.2008.00790.x

Yi, F., Jin, R., Sun, J., Ma, B., & Bao, X. (2018). Evaluation of mechanical-pressed essential oil from Nanfeng mandarin (Citrus reticulata Blanco cv. Kinokuni) as a food preservative based on antimicrobial and antioxidant activities. LWT, 95, 346–353. https://doi.org/10.1016/j.lwt.2018.05.011

Bourgou, S., Rahali, F. Z., Ourghemmi, I., & Saïdani Tounsi, M. (2012). Changes of Peel Essential Oil Composition of Four Tunisian Citrus during Fruit Maturation. The Scientific World Journal, 2012, 1–10.

https://doi.org/10.1100/2012/528593

Değirmenci, H., & Erkurt, H. (2020). Relationship between volatile components, antimicrobial and antioxidant properties of the essential oil, hydrosol and extracts of Citrus aurantium L. flowers. Journal of Infection and Public Health, 13(1), 58–67.

https://doi.org/10.1016/j.jiph.2019.06.017

Moosavy, M.-H., Basti, A. A., Misaghi, A., Salehi, T. Z., Abbasifar, R., Mousavi, H. A. E., Alipour, M., Razavi, N. E., Gandomi, H., & Noori, N. (2008). Effect of Zataria multiflora Boiss. Essential oil and nisin on

Salmonella typhimurium and Staphylococcus aureus in a food model system and on the bacterial cell membranes. Food Research International, 41(10), 1050–1057. https://doi.org/10.1016/j.foodres.2008.07.018

Mahmoud, B. S. M., Yamazaki, K., Miyashita, K., Il-Shik, S., Dong-Suk, C., & Suzuki, T. (2004). Bacterial microflora of carp (Cyprinus carpio) and its shelf-life extension by essential oil compounds. Food Microbiology, 21(6), 657–666.

https://doi.org/10.1016/j.fm.2004.03.001

Magalhães, D., Vilas-Boas, A. A., Teixeira, P., & Pintado, M. (2023). Functional Ingredients and Additives from Lemon by-Products and Their Applications in Food Preservation: A Review. Foods, 12(5), 1095. https://doi.org/10.3390/foods12051095

Vakili-Ghartavol, M., Arouiee, H., Golmohammadzadeh, S., Naseri, M., & Bandian, L. (2024). Edible coatings based on solid lipid nanoparticles containing essential oil to improve antimicrobial activity, shelf-life, and quality of strawberries. Journal of Stored Products Research, 106, 102262. https://doi.org/10.1016/j.jspr.2024.102262

Oboh, G., Ademosun, A. O., Olumuyiwa, T. A., Olasehinde, T. A., Ademiluyi, A. O., & Adeyemo, A. C. (2017). Insecticidal activity of essential oil from orange peels (Citrus sinensis) against Tribolium confusum, Callosobruchus maculatus and Sitophilus oryzae and its inhibitory effects on acetylcholinesterase and Na+/K+-ATPase activities. Phytoparasitica, 45(4), 501–508. https://doi.org/10.1007/s12600-017-0620-z

Pourbafrani, M., McKechnie, J., MacLean, H. L., & Saville, B. A. (2013). Life cycle greenhouse gas impacts of ethanol, biomethane and limonene production from citrus waste. Environmental Research Letters, 8(1), 015007. https://doi.org/10.1088/1748-9326/8/1/015007

Downloads

Published

2024-10-31