Insertion of Hungarian Merino Sheep Breed into the European Merino Group according to Maternal Origin (mtDNA CR)

Authors

  • Mária Szabó University of Debrecen, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, Department of Animal Breeding, 1. Egyetem Square, Debrecen, Hungary
  • István Monori University of Debrecen, Centre for Agricultural Sciences, Research Institute of Karcag, 166. Kisújszállási St. Karcag, Hungary
  • Szilvia Kusza University of Debrecen, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, Department of Animal Breeding, 1. Egyetem Square, Debrecen, Hungary

Keywords:

Genetic Diversity, Hungarian Merino, Husbandry, Mitochondrial DNA, Sheep

Abstract

Merino sheep breeds have been widely distributed across the world. They represent one of the most important genetic resource of the sheep sector. But the crisis of the wool industry led to a drastic reduction in the number of European Merino breeds including the Hungarian Merino. The Hungarian Merino is a local sheep breed with a nearly 250-year old breeding history in Hungary. It has the largest number of individuals between both of the purebred (including nucleus and multiplier flocks) and commercial flocks. Most of the purebred flocks went through a liquidation after the year 1989. That also caused a drastic reduction in the number of purebred-ewes. The Hungarian Merino breeding stock consists of barely 3700 female individuals recently. This has led to declare the breed endangered in 2014. Our future plan is to analyse the genetic variability of the Hungarian Merino breed based on the approximately 1000 base pairs long mitochondrial DNA (mtDNA) D-loop sequences. So far, we collected DNA samples from 172 individuals from 10 genealogical lines. We would like to examine the haplotype diversity and compare the overall genetic distances within and among each genealogical lines. Our further plan is to compare our data to GenBank sequences of other Merino and founder breeds.

References

Pereira F-Davis SJ-Pereira L-McEvoy B-Bradley DG-Amorim A., Genetic signatures of a Mediterranean influence in Iberian Peninsula sheep husbandry. Molecular Biology and Evolution 2006;23:1420–6.

Demirci S-Baştanlar EK-Dağtaş ND-Pişkin E-Engin A-Özer F, Mitochondrial DNA diversity of modern, ancient and wild sheep (Ovis gmelinii anatolica) from Turkey: New insights on the evolutionary history of sheep. PLoS ONE. 2013;8

Pedrosa, S., Uzun, M., Arranz, J.J., Gutierrez-Gil, B., Primitivo, F.S., Bayon, Y., Evidence of three maternal lineages in near eastern sheep supporting multiple domestication events. Proceedings of the Royal Society B. London 272, 2211–2217.

Polgár P.-Toldi Gy., Juh- és kecsketenyésztés. Pannon Egyetem, Kaposvári Egyetem

Diez-Tascón C.-Littlejohn RP-Almeida PAR-Crawford AM., Genetic variation within the Merino sheep breed: analysis of closely related populations using microsatellites. Animal Genetics 2000;31:243–51.

Vahid-Kóbori, A merinó juhok tenyésztése és kiválasztása. Szaktudás Kiadó Ház. Budapest.

Lasagna E, Bianchi M, Ceccobelli S, Landi V, Martinez A, Pla JLV, et al. Genetic relationships and population structure in three Italian Merino-derived sheep breeds. Small Ruminant Research. 2011;96:111–9.

Semyonov SI, Selkin II: In Sheep: Animal genetic resources of the USSR. Dimitriev NG, Ernst LK (editors). Rome: FAO-UNEP; 1989:154–271.

Ciani E.-Lasagna E.-D’Andrea M.-Alloggio I.-Marroni F.-Ceccobelli S.-Bermejo J. V. D.-Sarti F. M.-Kijas J.-Lenstra J. A.-Pilla F., Merino and Merino-derived sheep breeds: a genome-wide intercontinental study. Genetics Selection Evolution. 2015; 47(1): 64.

Hajduk, P. – Sáfár, L. – Baranyai, G., A Magyar Juh- és Kecsketenyésztő Szövetség Tizennegyedik Kos- Bakkatalógusa. p. 4. Open Communications Kft. Budapest, 2012.

Hajduk, P. – Sáfár, L. (2013): A magyar merinó védettségre szorul. Magyar Állattenyésztők Lapja. XVIII. Évf. 9. sz. p. 30.

Hajduk Zs. (2004): A magyar merinó genealógiai vonalai. (Szakdolgozat). Kaposvári Egyetem. Kaposvár.

Dohy, J. (1999): Genetika állattenyésztőknek. Mezőgazda Kiadó. Budapest.

Komlósi, I. (2012): Juh és szarvasmarha tenyésztési programok fejlesztését megalapozó kutatások. MTA Doktori Értekezés. Debrecen. http://real-d.mtak.hu/530/5/dc_192_11_doktori_mu.pdf

Bátoriné Kusza, Sz. (2006): A genetikai távolság becslése cigája és zackel fajtakörbe tartozó juhállományok között, valamint három nem klasszikus immungén kifejeződés és polimorfizmus vizsgálata sertésben 149 p. Témavezető: Jávor András; Bősze Zsuzsanna Védés éve: 2006. Megjelenés/Fokozatszerzés éve: 2006.

Lancioni, H. – Di Lorenzo, P. – Ceccobelli, S. – Perego, U. A. – Miglio, A. – Landi, V. – Antognoni, M. T. – Sarti, F. M. – Lasagna, E. – Achilli, A. (2013): Phylogenetic Relationships of Three Italian Merino-Derived Sheep Breeds Evaluated through a Complete Mitogenome Analysis. PLOS ONE 8 (9): e73712

Hiendleder, S., Lewalski, H., Wassmuth, R., Janke, A. (1998): The complete mitochondrial DNA sequence of the domestic sheep (Ovis aries) and comparison with the other major ovine haplotype. Journal of Molecular Evolution. 1998 Oct;47(4):441-8.

Raskó, I. (2002): Kapocs az evolúció és az orvosi genetika között. Magyar Tudomány 2002/5

Wang, X., Ma, Y.H., Chen, H., Guan, W.J. (2007): Genetic and phylogenetic studies of Chinese native sheep breeds (Ovis aries) based on mtDNA D-loop sequences. Small Ruminant Research. Volume 72, Issues 2-3, Pages 232–236

Wolf, C., Rentsch, J. Hubner, P. (1999): PCR-RFLP analysis of mitochondrial DNA: a reliable method for species identification. Journal of Agricultural and Food Chemistry. 7, 1350-1355.

Upholt, W.B., Dawid, I.B.,(1977): Mapping of mitochondrial DNA of individual sheep and goats: rapid evolution in the D-loop region. Cell 11, 571-583.

Kusza, Sz., Nagy, I., Sasvári, Zs., Stágel, A., Németh, T., Molnár, A., Kumed, K., Bősze, Zs., Jávor, A., Kukovics, S. (2008): Genetic diversity and population structure of Tsigai and Zackel type of sheep breeds in the Central-, Eastern- and Southern-European regions. Small Ruminant Research 78 (2008) 13–23

Sziszkosz, N., Kusza, Sz., Jávor, A., Mihók, S. (2015): Méneskönyvi és molekuláris genetikai egybeesések a gidrán kancacsaládjainál az mtDNS alapján. AGRÁRTUDOMÁNYI KÖZLEMÉNYEK = ACTA AGRARIA DEBRECENIENSIS 2015:(65) pp. 69-73. (2015)

Kijas JW-Lenstra JA-Hayes B-Boitard S-Porto Neto LR-San Cristobal M. (2012): Genome-wide analysis of the world’s sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biology 2012;10

Tapio, M., Marzanov, N., Ozerov, M., Cinkulov, M., Gonzarenko, G., Kiselyova, T., Murawski, M., Viinalass, H., Kantanen, J. (2006): Sheep mitochondrial DNA variations in European, Caucasian and Central Asian areas. Molecular Biology and Evolution. 23, 1776-1783

Pedrosa, S., Arranz, JJ., Brito, N., Molina, A., San Primitivo, F., Bayón, Y. (2007): Mitochondrial diversity and the origin of Iberian sheep. Genetics Selection and Evolution. 2007 Jan-Feb;39(1):91-103. Epub 2007 Jan 11.

Meadows J. R. S.-Cemal I.-Karaca O.-Gootwine E.-Kijas J. W. (2007): Five Ovine Mitochondrial Lineages Identified From Sheep Breeds of the Near East. Genetics. 2007 Mar; 175 (3): 1371–1379.

Kumar S., Stecher G., and Tamura K. (2015) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0. Molecular Biology and Evolution. Molecular Biology and Evolution (2016)

Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452 http://www.ncbi.nlm.nih.gov/pubmed/19346325.

Downloads

Published

2023-09-05